Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 220: 113160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197699

RESUMO

A monolithic active pixel sensor based direct detector that is optimized for the primary beam energies in scanning electron microscopes is implemented for electron back-scattered diffraction (EBSD) applications. The high detection efficiency of the detector and its large array of pixels allow sensitive and accurate detection of Kikuchi bands arising from primary electron beam excitation energies of 4 keV to 28 keV, with the optimal contrast occurring in the range of 8-16 keV. The diffraction pattern acquisition speed is substantially improved via a sparse sampling mode, resulting from the acquisition of a reduced number of pixels on the detector. Standard inpainting algorithms are implemented to effectively estimate the information in the skipped regions in the acquired diffraction pattern. For EBSD mapping, an acquisition speed as high as 5988 scan points per second is demonstrated, with a tolerable fraction of indexed points and accuracy. The collective capabilities spanning from high angular resolution EBSD patterns to high speed pattern acquisition are achieved on the same detector, facilitating simultaneous detection modalities that enable a multitude of advanced EBSD applications, including lattice strain mapping, structural refinement, low-dose characterization, 3D-EBSD and dynamic in situ EBSD.

2.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204547

RESUMO

Mechanical fracture properties were studied for the common atomic-layer-deposited Al2O3, ZnO, TiO2, ZrO2, and Y2O3 thin films, and selected multilayer combinations via uniaxial tensile testing and Weibull statistics. The crack onset strains and interfacial shear strains were studied, and for crack onset strain, TiO2/Al2O3 and ZrO2/Al2O3 bilayer films exhibited the highest values. The films adhered well to the polyimide carrier substrates, as delamination of the films was not observed. For Al2O3 films, higher deposition temperatures resulted in higher crack onset strain and cohesive strain values, which was explained by the temperature dependence of the residual strain. Doping Y2O3 with Al or nanolaminating it with Al2O3 enabled control over the crystal size of Y2O3, and provided us with means for improving the mechanical properties of the Y2O3 films. Tensile fracture toughness and fracture energy are reported for Al2O3 films grown at 135 °C, 155 °C, and 220 °C. We present thin-film engineering via multilayering and residual-strain control in order to tailor the mechanical properties of thin-film systems for applications requiring mechanical stretchability and flexibility.

4.
Opt Express ; 27(17): 24154-24160, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510309

RESUMO

We investigated the electrical and optical performances of semipolar (11-22) InGaN green µLEDs with a size ranging from 20 × 20 µm2 to 100 × 100 µm2, grown on a low defect density and large area (11-22) GaN template on patterned sapphire substrate. Atom probe tomography (APT) gave insights on quantum wells (QWs) thickness and indium composition and indicated that no indium clusters were observed in the QWs. The µLEDs showed a small wavelength blueshift of 5 nm, as the current density increased from 5 to 90 A/cm2 and exhibited a size-independent EQE of 2% by sidewall passivation using atomic-layer deposition, followed by an extremely low leakage current of ~0.1 nA at -5 V. Moreover, optical polarization behavior with a polarization ratio of 40% was observed. This work demonstrated long-wavelength µLEDs fabricated on semipolar GaN grown on foreign substrate, which are applicable for a variety of display applications at a low cost.

5.
J Am Chem Soc ; 141(35): 13977-13986, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31436416

RESUMO

The chemical reactivity and/or the diffusion of Ag atoms or ions during thermal processing can cause irreversible structural damage, hindering the application of Ag nanowires (NWs) in transparent conducting films and other applications that make use of the material's nanoscale properties. Here, we describe a simple and effective method for growing monolayer SnO2 on the surface of Ag nanowires under ambient conditions, which protects the Ag nanowires from chemical and structural damage. Our results show that Sn2+ and Ag atoms undergo a redox reaction in the presence of water. First-principle simulations suggest a reasonable mechanism for SnO2 formation, showing that the interfacial polarization of the silver by the SnO2 can significantly reduce the affinity of Ag to O2, thereby greatly reducing the oxidation of the silver. The corresponding values (for example, before coating: 17.2 Ω/sq at 86.4%, after coating: 19.0 Ω/sq at 86.6%) show that the deposition of monolayer SnO2 enables the preservation of high transparency and conductivity of Ag. In sharp contrast to the large-scale degradation of pure Ag-NW films including the significant reduction of its electrical conductivity when subjected to a series of harsh corrosion environments, monolayer SnO2 coated Ag-NW films survive structurally and retain their electrical conductivity. Consequently, the thermal, electrical, and chemical stability properties we report here, and the simplicity of the technology used to achieve them, are among the very best reported for transparent conductor materials to date.

6.
Nanomaterials (Basel) ; 9(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641884

RESUMO

Rapid progress in the performance of organic devices has increased the demand for advances in the technology of thin-film permeation barriers and understanding the failure mechanisms of these material systems. Herein, we report the extensive study of mechanical and gas barrier properties of Al2O3/ZnO nanolaminate films prepared on organic substrates by atomic layer deposition (ALD). Nanolaminates of Al2O3/ZnO and single compound films of around 250 nm thickness were deposited on polyethylene terephthalate (PET) foils by ALD at 90 °C using trimethylaluminium (TMA) and diethylzinc (DEZ) as precursors and H2O as the co-reactant. STEM analysis of the nanolaminate structure revealed that steady-state film growth on PET is achieved after about 60 ALD cycles. Uniaxial tensile strain experiments revealed superior fracture and adhesive properties of single ZnO films versus the single Al2O3 film, as well as versus their nanolaminates. The superior mechanical performance of ZnO was linked to the absence of a roughly 500 to 900 nm thick sub-surface growth observed for single Al2O3 films as well as for the nanolaminates starting with an Al2O3 initial layer on PET. In contrast, the gas permeability of the nanolaminate coatings on PET was measured to be 9.4 × 10-3 O2 cm³ m-2 day-1. This is an order of magnitude less than their constituting single oxides, which opens prospects for their applications as gas barrier layers for organic electronics and food and drug packaging industries. Direct interdependency between the gas barrier and the mechanical properties was not established enabling independent tailoring of these properties for mechanically rigid and impermeable thin film coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...